Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(9): e0256738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506510

RESUMO

Neurodegenerative disease (ND) is a growing health burden worldwide, but its causes and treatments remain elusive. Although most cases of ND are sporadic, rare familial cases have been attributed to single genes, which can be investigated in animal models. We have generated a new mutation in the calcium-independent phospholipase A2 (iPLA2) VIA gene CG6718, the Drosophila melanogaster ortholog of human PLA2G6/PARK14, mutations in which cause a suite of NDs collectively called PLA2G6-associated neurodegeneration (PLAN). Our mutants display age-related loss of climbing ability, a symptom of neurodegeneration in flies. Although phospholipase activity commonly is presumed to underlie iPLA2-VIA function, locomotor decline in our mutants is rescued by a transgene carrying a serine-to-alanine mutation in the catalytic residue, suggesting that important functional aspects are independent of phospholipase activity. Additionally, we find that iPLA2-VIA knockdown in either muscle or neurons phenocopies locomotor decline with age, demonstrating its necessity in both neuronal and non-neuronal tissues. Furthermore, RNA in situ hybridization shows high endogenous iPLA2-VIA mRNA expression in adult germ cells, and transgenic HA-tagged iPLA2-VIA colocalizes with mitochondria there. Mutant males are fertile with normal spermatogenesis, while fertility is reduced in mutant females. Mutant female germ cells display age-related mitochondrial aggregation, loss of mitochondrial potential, and elevated cell death. These results suggest that iPLA2-VIA is critical for mitochondrial integrity in the Drosophila female germline, which may provide a novel context to investigate its functions with parallels to PLAN.


Assuntos
Proteínas de Drosophila , Fosfolipases A2 do Grupo X , Músculos , Doenças Neurodegenerativas , Neurônios , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster , Feminino , Células Germinativas/metabolismo , Células Germinativas/patologia , Fosfolipases A2 do Grupo X/genética , Fosfolipases A2 do Grupo X/fisiologia , Masculino , Mitocôndrias/metabolismo , Músculos/metabolismo , Músculos/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Neurônios/patologia
2.
Genetics ; 216(3): 633-641, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33158986

RESUMO

Since the dawn of the 20th century, the fruit fly Drosophila melanogaster has been used as a model organism to understand the nature of genes and how they control development, behavior, and physiology. One of the most powerful experimental approaches employed in Drosophila is the forward genetic screen. In the 21st century, genome-wide screens have become popular tools for identifying evolutionarily conserved genes involved in complex human diseases. In the accompanying article "Amyotrophic Lateral Sclerosis Modifiers in Drosophila Reveal thePhospholipase DPathway as a Potential Therapeutic Target," Kankel and colleagues describe a forward genetic modifier screen to discover factors that contribute to the severe neurodegenerative disease amyotrophic lateral sclerosis (ALS). This primer briefly traces the history of genetic screens in Drosophila and introduces students to ALS. We then provide a set of guided reading questions to help students work through the data presented in the research article. Finally, several ideas for literature-based research projects are offered as opportunities for students to expand their appreciation of the potential scope of genetic screens. The primer is intended to help students and instructors thoroughly examine a current study that uses forward genetics in Drosophila to identify human disease genes.


Assuntos
Modelos Animais de Doenças , Drosophila melanogaster/genética , Doenças Genéticas Inatas/genética , Genética/educação , Animais , Humanos , Materiais de Ensino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...